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Predictive Weather Models

Foundations in the early 1900s
Supercomputing in the 1970s

Numerical methods for scale interactions,
boundaries, initialization, time-stepping

Hierarchy of models and complexity
Physical process representation
Ensemble forecasting

https://public.wmo.int/en/our-mandate/weather Model initialization

Bauer, P, A. Thorpe, and G. Brunet (2015) “The quiet revolution of numerical weather prediction,” Nature, 525, 47-55.



U.S. Weather Prediction
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Applications (2 to 24-48 hrs)

General forecasting, renewable energy,
severe storms, and aviation planning
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RAPv3 (1 hr update, 13 km grid)
Continental scale assimilation/modeling
HRRRv2 (1 hr update, 3 km grid)
> Assimilation of 3 km radar @15 min

% 2, =l Assimilation of RAP 13 km @ 1 hr

e Cloud/convection model
il = Est grid points/surface area:
RAP: 300,000; HRRR: 5,000,000
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https://rapidrefresh.noaa.gov/
https://rapidrefresh.noaa.gov/hrrr/



Weather Observations and Data

Hourly sources for
observations



Weather Observations and Data

Wind, radiances, cloud-top
height and humidity
> 25,000/hr



Weather Observations and Data
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Temperature, moisture,
wind, pressure, clouds,
visibility, weather

> 15,000/hr




Weather Observations and Data
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Temperature, humidity, wind, pressure
~ 150/hr



Weather Observations and Data

June 29, 2012 Midwest/Ohio Valley Derecho
Radar Imagery Composite Summary 18-00 UTC
~450 miles in 6 hours / Average Speed ~75 mph

Summary Map by G. Carbin
NWS/Storm Pradiction Center

Wind, radial velocity, rain, snow, lightning
1,500,000/hr, plus 125 radars



Severe Weather —
Anatomy of a Supercell

Tornado Warning Statistics
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Research Toward Envisioned Reality
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Drones for Weather Observations

The lowest part of the The Boundary Layer is Accessible
atmosphere (boundary layer) Using UAS

is directly influenced by
terrain, ground use (forest,
crops, urban, etc.) and diurnal
cycle affecting heat transfer,
pollution dispersion and
advection, turbulence, and
agricultural and urban
meteorology.




Small UAS In Boundary Layer
Meteorology
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CL OU D-MA P : Objective #1
arly-Career Faculty and

Research Infrastructure

Collaboration Leading Operational Uas Development \ - Development via Multi-University,
S Multi-Disciplinary Mentaring

for Meteorology and Atmospheric Physics

1. Develop a strong mentoring program and ' A e

intellectual center of gravity in the area of UAS in
Weather and develop joint efforts for the
development of a national center in use of UAS
in Atmospheric Science.

2. Create and demonstrate UAS capabilities
needed to support UAS operating in the
extreme conditions typical in atmospheric
sensing, including the sensing, control,
planning, asset management, learning,
control and communications technologies.

3. Develop and demonstrate coordinated
control and collaboration between
autonomous air vehicles.

4. Develop and conduct UAS themed outreach in o el sl
i emed Outreach

support of NSF’s technology education and
workforce development.




CLOUD-MAP Team

Atmospheric Physics

Risk Dissemination

e

RF Communication

Storm Microphysics

Public Perception
Distributed Data

Convection Init.

NeBMusn.v ]ul "
Lincoln

Climatology >100 NSF participants
Hydrology ]I‘Ziluulfyllngnd trainees
Chemistry (even more w/staff)
Swarming
Infrasonics

Sensors
GIS

UAS



%

MAP

2017 UK-only Campaignh Summary

Fixed Wing Flights
e Skywalker X8's in triples or pairs

— Turbulence transects or multi-unit
control

— 39 flights, 33.183 hrs
Rotorcraft Flights

 Solo (Sonic), DJI Phantom (Chem and
BAE), S1000+ Octocopter (BAE)
— Profiling or remote ground sensing
— BAE: 20 flights, 5.017 hrs
— Chem: 36 flights, 9.055 hrs
— ME: 44 flights, 9.733 hrs

UK to host researchers in
Kentucky in 2018!






Drones Can Answer Important Questions

Science:

e |dentify Fuel for Bow Echo (Straight
Line) Winds?

e Influence of Cold Pools on Storms
and in Valleys?

e Effects of Ground Features?

Modeling:
e \Validate Physical Process Models

Observations:
e Assimilation Data




Flights and Weather

From NASA Evaluation (2006)
Tamdar Sensor on Commuter
Flights

Today, TAMDAR sensors on
>400 aircraft flights daily
contribute observations to
AirDat forecasting

http://www.airdat.com
/tamdar/index.php




Flights and Weather

ADELTA & American Airlines “g Aaska.

Flight Tracker (4/5/17) SkyWest Route Map (Oct 2017)

In one year, controllers handle an average of 64 million takeoffs and landings."
- From the National Air Traffic Controllers Association (https://www.natca.org/)

https://sos.noaa.gov/datasets/air-traffic/



Weather and Traffic Management
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FHWA-JPO-16-253, “Vehicle-2-Infratructure (V2I) Safety Applications; Performance Reqts, Vol. 6, Spot
Weather Information Warning — Diversion (SWIW-D),” Aug 2015

https://www.forbes.com/sites/oliviergarret/2017/03/03/10-million-self-driving-cars-will-
hit-the-road-by-2020-heres-how-to-profit/#717faf8c7e50

http://fortune.com/2017/01/06/drones-registrations-soaring-faa/



Future Observations including
Autonomous Systems

Hourly Variables Observed Observation Count
Observation Type

Satellites

Ground Stations
(Mesonets, etc.)

Balloons
Radars

Aircraft (TAMDAR,
US flights)

UAS

Urban Sensors
(e.g., Chicago AoT)

Autonomous
Vehicles

V2l Infrastructure

Wind, radiances, cloud-top height and
humidity

Temperature, moisture, wind, pressure,
clouds, visibility, weather

Temperature, humidity, wind, pressure
Wind, radial velocity, rain, snow, lightning

Temperature, pressure, winds, humidity,
icing, turbulence

Current: Temp, wind, pressure, aerosols
humidity, chemistry, weather; Future: TBD

Weather, light, pollution

Future: TBD (weather, temp, humidity, and
more affecting road conditions)

Future: TBD (temp, humidity,
precipitation, etc)

>25,000

>15,000

~150
>1.5M, plus 125 radars

400 daily (TAMDAR);
>87,000 daily U.S. flights

600,000 registered in 2016;
7,000,000 by 2020

Chicago:50(2016); 500 by 2018
Urban Heat Island data

10,000,000 by 2020

>75,000 km in U.S. Interstate



Autonomous Systems Weather
Observations

Safer Autonomous Systems Operations
and Improved Weather Forecasting

Future challenges include the following, among others: Numerical methods
to incorporate more, possibly lesser quality, observations into models for
forecasting and operations, public commitment to provide public services
and standards for observation integration, and regional observation sparsity.



QUESTIONS?
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